Hurricane Prediction Across Timescales at NOAA/GFDL

Presented by Gabriel A. Vecchi

NOAA/GFDL

Hurricane Prediction Across Timescales

DAYS (GFDL Hurricane Model)

MONTHS (HiRAM 25km Seasonal Forecasts)

SEASONS (HyHuFS Hybrid Forecast System)

YEARS (Decadal HyHuFS)

DECADES (Response to radiative forcing)

Sources of & Limitations on climate predictability

years to decade

hours to a month

Climatology

(what happens typically, including randomness) need good observations, models

Evolution of initial conditions

(e.g., weather or El Niño forecast) need good observations, models, initialization schemes

Many decades to centuries

Climatology

Climate response to forcing

(e.g., CO₂, aerosols, sun, volcanoes) need good models and estimates of forcing

DAYS: GFDL Hurricane Model

Track
Forecast
Performance
of GFDL
Hurricane
Model for
Hurricane
Sandy

All GFDL track forecasts for Hurricane Sandy, beginning 12 UTC 23 October 2012

- First operational U.S. forecast model to correctly predict Sandy's "left turn"
- GFDL model significantly more skillful than the other two NWS forecast models (GFS, HWRF) at 4- and 5-day lead time.

MONTHS: 25km HiRAM Seasonal hurricane predictions – initialized July 1 1990-2010

Resolution: 25 km, 32 levels

- 5-members initialized on July 1 with NCEP analysis
- SST anomaly is held constant during the 5-month predictions
- Climatology O3 & greenhouse gases are used

Zhao et al. 2010 Chen and Lin 2011 Chen et al., 2012

SEASONS: HyHuFS long-lead forecasts system. Skill from as early as October of year before

Initialized January: r=0.66

May & onward forecasts fed to NOAA Seasonal Outlook Team

http://gfdl.noaa.gov/HyHuFS

Prediction for 2013: active

Vecchi et al. (2011), Villarini and Vecchi (2013)

YEARS: Initialization improves 5-year predictions

Hybrid system: statistical hurricanes, dynamical decadal climate forecasts

- Retrospective predictions encouraging.
- However, small sample size limits confidence
- Skill arises more from recognizing 1994-1995 shift than actually predicting it.
 EXPERIMENTAL: NOT OFFICIAL FORECAST

Vecchi et al. (2013.a, J. Clim. in press)

YEARS: Initialization improves 5-year predictions

Hybrid system: statistical hurricanes, dynamical decadal climate forecasts

- Retrospective predictions encouraging.
- However, small sample size limits confidence
- Skill arises more from recognizing 1994-1995 shift than actually predicting it.
 EXPERIMENTAL: NOT OFFICIAL FORECAST

Vecchi et al. (2013.a, J. Clim. in press)

DECADES: Hurricane Attribution and Projection

Historical aerosol forcing may have masked century-scale greenhouse-induced intensification in Atlantic

Power Dissipation Index

$$PDI = \sum_{storms} U_{max}^3$$

Villarini and Vecchi (2013, J. Climate)

North Atlantic frequency decrease & intensity increase, so strongest storms may become more frequent

bars indicate "best" estimate, dots indicate alternative estimates. Change in number of storms per decade 20 10 0 -10 -20 -30 -40 Trop. Storm+ Cat. 2+3 Cat. 4+5 Cat. 1 Hurr. Hurricane Hurricane

Adapted from Knutson et al (2008, Nature Geosci.), Bender et al (2010 Science), Knutson et al. (2013, J. Climate)

Towards Seamless Prediction Across Timescales: High-resolution coupled prediction - FLOR

FLOR (Forecast-oriented Low Ocean Resolution version of CM2.5)

Goal is to build seasonal to decadal forecasting system to: Yield improved forecasts of large-scale climate Enable forecasts of regional climate and extremes

Faster computer (Gaea) allows improved resolution that translates into significantly reduced biases in CM2.5 relative to CM2.1

Resolution over land of GFDL SI forecast systems

One goal: to outperform CM2.1

"Real-time" skill of first year of NMME Continental US Precip Forecasts

Van den Dool et al. (2013)

High-res enables exploration of regional hydroclimate (including extremes)

Structure of ENSO anomalies improves in FLOR (captures much of CM2.5's improvement)

Preliminary FLOR forecast results: Improved skill relative CM2.1 (both using CM2.1 I.C.s – not our "best shot")

Global Land Precipiation Pattern Correlation 1997-1998 Difference Oct-Dec Predicted 1-Jan

Increase in skill for global and regional surface temperature and precipitation over land (Jia et al. 2013, in prep.)

Prediction of TCs in high-resolution global coupled model (FLOR)

Coupled Model Tracks (actual seasonal forecasts)

More storms

Fewer storms

(Kim et al. 2013)

